1. Use eiat to help compute the Laplace transform of cos(at).
SOLUTION:
Since eiat = cos(at) + i sin(at), then
L(eiat ) = L(cos(at)) + iL(sin(at))
so we compute the Laplace transform of eiat , then take the real part
for our answer:
iat
L(e ) =
Z ∞
e
−st iat
e
dt =
0
Z ∞
e−(s−ai)t dt = −
0
0+
1
e−(s−ai)t
s − ai
∞
=
0
1
s + ai
= 2
s − ai
s + a2
And the real part is s2 /(s2 + a2 ).
2. Same idea, but we’ll compute L(eat (cos(bt) + i sin(bt)).
Z ∞
e
−st (a+ib)t
e
dt =
Z ∞
e
−((s−a)+bi)t
0
0
1
dt = −
e−((s−a)−bi)t
(s − a) − bi
∞
=
0
(s − a)2 + b2
1
=
(s − a) − bi
(s − a)2 + b2
We take the real part.
3. Exponential order practice:
(a) sin(t): We can use et , for t > 0 (see graph)
(b) tan(t) has a vertical asymptote at t = π/2 (and multiples of π
thereafter), so it is NOT of exponential order.
3
(c) t3 = eln(t ) = e3 ln(t) ≤ e3t , so this is of exponential order.
2
(d) et is not of exponential order, since the exponent is of order 2.
t
(e) 5t = eln(5 ) = et ln(5)
(f) tt is not of exponential order:
t
tt = eln(t ) = et ln(t)
1