Question 1
Evaluate the line integral, where C is the given curve.
∫C xy ds
C: x = t²,
y = 2t,
0 ≤ t ≤ 4
Answer
Step 1
Consider
x = t²
dx/dt = 2t
y = 2t
dy/dt = 2
Consider:
ds = √( (dx/dt)² + (dy/dt)² ) dt
= √( (2t)² + (2)² ) dt
= √(4t² + 4) dt
= √(4(t² + 1)) dt
ds = 2√(t² + 1) dt
Hence the line integral is,
∫C xy ds = ∫₀⁴ (t²)(2t)(2√(t² + 1)) dt
= 4 ∫₀⁴ t³√(t² + 1) dt ... (1)
Step 2
Let t² + 1 = u²
2t dt = 2u du
t dt = u du
For t = 0 then
t² + 1 = u²
u² = 1
u = 1
For t = 4 then
t² + 1 = u²
u² = 4² + 1
u² = 17
u = √17
Substitute these values in (1):
∫C xy ds = 4 ∫₁√¹⁷ t³√(t² + 1) dt
= 4 ∫₁√¹⁷ √(u²) × u du
= 4 ∫₁√¹⁷ (u² - 1)u du
= 4 ∫₁√¹⁷ (u⁴ - u²) du
= 4 [u⁵/5 - u³/3]₁√¹⁷
= 4 [(√17)⁵/5 - (√17)³/3 - (⅕ - ⅓)]
= 4 [ (782√17 / 15) - (2/15) ]
∫C xy ds = 860.33
Question 2
Use a double integral to find the volume of the solid shown in the figure.
Answer 1
Solution:
V = ∫₀³ ∫₀⁶ (6 - y) dy dx
Answer 2
Solution:
V = ∫₀³ ∫₀⁶ (6 - 4) dy dx
V = ∫₀³ ∫₀⁴ 6 dy dx
V = ∫₀³ (6(4)) dx
V = ∫₀³ 16 dx
V = 16(3) = 48
Question 3
Use geometry or symmetry, or both, to evaluate the double integral.
∬D √(R² - x² - y²) dA
D is the disk with center the origin and radius R.
Answer
∬D √(R² - x² - y²) dA
We can write z = √(R² - x² - y²)
which can become
x² + y² = R² - z², z ≥ 0
Thus, z is the upper half, a hemisphere.
We find the volume using the sphere formula, taking half:
V = ½ (4/3 πR³)
Results:
2/3 πR³
Question 4
Evaluate the integral by making the given substitution. ∫ x³ (3 + x⁴)⁷ dx, u = 3 + x⁴
Answer
Step 1
x³(3 + x⁴)⁷ dx, u = 3 + x⁴
Substitute (3 + x⁴) = u
4x³ dx = ∂u
x³ dx = ∂u/4
∫ x³ (u⁷) ∂u/4
= (u⁸ / 4 × 8) + c
Step 2
= 1/32 (3 + x⁴)⁸ + c
Question 5
How to prove ∫₀∞ e⁻ˣ² dx = √π/2
Answer 1
This is an old favorite.
Define
I = ∫₀∞ e⁻ˣ² dx
Then
I² = (∫₀∞ e⁻ˣ² dx)(∫₀∞ e⁻ʸ² dy)
I² = ∫₀∞ ∫₀∞ e⁻(x² + y²) dx dy
Now switch to polar coordinates:
I² = ∫₀²π ∫₀∞ e⁻ʳ² r dr dθ
The θ integral gives 2π:
I² = 2π ∫₀∞ e⁻ʳ² r dr
Using substitution,
u = r²:
I² = π
I = √π
Answer 2
We can observe:
(∫₀∞ e⁻ˣ² dx)(∫₀∞ e⁻ʸ² dy) = V
Volume of the body is bounded as a solid of revolution:
V = ∫₀¹ π(-ln z) dz = π
Integrals #4 - Questions and Answers
of 6
Report
Tell us what’s wrong with it:
Thanks, got it!
We will moderate it soon!
Free up your schedule!
Our EduBirdie Experts Are Here for You 24/7! Just fill out a form and let us know how we can assist you.
Take 5 seconds to unlock
Enter your email below and get instant access to your document