Second Derivative Test Hw 1

background image

practice Second Derivative Test Hw 1/6/16 Ey

problems: 8,10,20 / 21,23,35,31

10. y=5-x's y: or 5-3/x -DO

f"(-1)

f"(1)

1

8

f(x) is Concave down on

P'(x)= 1/3X2/3

all

O

1/9

2

X= (-00,0) amt ConCuve

or

93Vx5

X=0

up on x=(10,00)

"

=2/9 x-5/3

: undefined

2:0

8. f(x)=-4x3 +12x2-4

Y=-x4 t 4x 4x +1

-00

p"(-1)

f"(1)

f"(3)

8

f(x) is Concave down

36

0

12

2

36

-12-2+24x=0

on x=(xx,0)V(2,00) and

12x (-x+2)

x={0,2}

Concave up on x=(0,2)

x=0 x=2

20. Y.X x

f"(-2)

f"(-1)

8

, (1)

f"(2)

8

(1+x²)⁴

-0.032-53 0.5 0-0.5-13 0.032

(x²+1)²

= 2x(x²-3)

11

x={-5,0,53}

f(x) has P.I. @

=1-x2 =

(1+x2)

(x*+1)2

2x(x23)=c

Chdelivek

X= {-53, O,

X=t5

@x10

21.

y

f(x) is positive on

y=f(x) f(x)

and is negative on x=(1,1), with Zero

23. 23.

1

y

f(x) is increasing on

-

on x={-1,1}

and

y=f'(x) =

f"(x) is pasitive on x=(0,00) and

decreasing an x=(2,0)V(2,00)

is hegative an x=(-00,0) and zero

-2

x @ x=0

0

Local Extrema:

2

AN

x

-2

2

Rel mux: x=8-2,2}+/-

+

Rel min: x= {o}

f(x) has a relative

35. Y=x3 3 + 3x2-2

min @ x=(0,-2)

37. y = x e

f(1) = =-0,368

x={-2,0}

and a relative

f'(x)= f'(x)=3x²+6x = 3x2+ 6x

max @ x=(-2,2)

f'(x)= ex + xêx

f(x) has a Relative

f"(x)=6x+6

ex(1+x)=0

min @x=(-1,-0.368)

3x2+ 6x =

f"(0)=66)+6 = +

X=-1

x={-1}

and no Iceal

3x(x+2)=0

f"(-2)=62)+6=-6-

f"(x)= e textxex

max

X=0 = X=2

=2extxex

=

: ex(2+x)

f"(-1)= (2+1) =0.368+