Perceptron Calculation Example
Architecture
Simple Perceptron
WX+b=0
b + i xi wI = 0
Algorithm
1. Step 0: Initialize weights(w) and bias(b) = 0.
Set learning rate
(0 1)
2. Step 1: execute steps 2-6 while condition is false.
3. Step 2: for each pair of input and target output vectors, s: t, perform steps 3 - 5.
4. Step 3: Input activation set
5. Step 4: Calculate the output
6. Step 5: update the weight and bias values
7. Step 6: Condition test
Output Respond:
y_in = b + i x i w i
y = 1 if y_in >
y = 0 if - y_in
y = -1 if y_in <
Update The Weight and Bias Values
If y ≠ t then:
wi (new) = wi (old) + txi
b(new) = b(old) + t
If y = t then:
wi (new) = wi (old)
b(new) = b(old)
Iteration
For simplification, w=0, b=0, =1, q=0
Epoch 1 Line 1
Epoch 1 Line 2 Epoch 1 Line 3
Epoch 1 Line 4
Epoch 1
Epoch 2
Epoch 3 Epoch 4
Epoch 5
Epoch 6
Epoch 7 Epoch 8
Epoch 9
Epoch 10