DAY 3
Advanced Algebra Honors More Graph Exponential Functions
Name Key
Period Date
Graph (including asymptotes) and identify the characteristics.
1. y = 4 ^ (x - 2)
시
2. y = - 2 ^ x - 3
01
1/4
y* 0 * - 2 ^ y; 0 - 1; - 2
right 2
down 3
Growth or Decay or Neither
asymptote: y = b
Domain: ()
Range: (0,0)
as x-no yo
3. y = 25 * (1/5) ^ (x + 3)
x125(5)
025
15
Growth or Decay on Neither
asymptote: y = - 3
Domain:
Range: (3)
asxy
y
4. y = (3) * 4 ^ (x + 2) - 2
x/0 * binomial(3 * (4) ^ x,3) 1
12
left 3
Growth of Decay or Neither
asymptote: y = 0 as x -> - ∞, y -> ∞
Domain: (- ∞, ∞) x -> ∞, y -> 0
Range: (0, ∞)
Growth or Decay or Neither
asymptote: Domain: ()
2
as x, y-2
Range: (-2,00)
5. y=-2^ x +2=. - (1/2) ^ x + 2
6. y = 2 * (1/4) ^ (x - 1) - 3
0
1
× 2 * (1/4) ^ 2
2
1 / 2
Growth or Decay of Neither
Growth or Decay or Neither
asymptote: y = 2 as x -> - ∞, y -> - p deg
asymptote: y = - 3 x(-)= p * (0, 1) ^ (- n) )D(n)
Domain: (- ∞, p + 0) x -> ∞, y -> 2
Domain: (- 60, 10) x -> ∞, y -> - 3
Range: (- ∞, 2)
Range: (-3,0)
7. y = - 3 ^ x + 1
-3
0-1
1-3
8. y = (1/3) ^ (- x) - 4 = (2) ^ 7 =*4-1
matrix * 13 ^ x \\ 0&1\\ 1&3 matrix
Growth or Decay or Neither
asymptote: y = 1 \\ -,m) as y p-\ Domain:
Range: (-10, 1)
Growth or Decay or Neither
asymptote: y = - 4 z(- rangle - ∞ ,y- rangle=4
Domain: (- 600, 100) x -> ∞, y -> ∞
Range: (-4,00)