Chapter 5: z-Scores
1. A z-score describes a precise location within a
distribution. The sign of the z-score tells whether
the location is above (+) or below (–) the mean, and
the magnitude tells the distance from the mean in
terms of the number of standard deviations.
2.
3.
a.
b.
c.
d.
z = 0.50
z = 2.00
z = –1.00
z = –1.50
a.
b.
c.
d.
above the mean by 8 points
above the mean by 2 points
below the mean by 8 points
below the mean by 2 points
4. a.
b.
5.
X
z
55 0.50
45 –0.50
X
z
60 1.00
30 –2.00
X
z
60 1.00
45 –0.50
X
z
58 0.80
47 –0.30
X
z
65 1.50
35 –1.50
X
70
75
X
z
53 –0.78
58 –0.22
X
65
48
6. a.
b.
7. a.
z
0.56
–1.33
z
1.11
1.67
X
z
75 2.50
35 –1.50
b.
X
z
49 0.75
37 –0.25
X
z
58 1.50
34 –0.50
X
z
16 –2.00
55 1.25
8.
X
z
44 1.00
28 –3.00
X
z
42 0.50
50 2.50
X
z
48 2.00
46 1.50
9.
X
84
78
10. a.
b.
c.
d.
z = +1.00
z = +2.00
z = –0.50
z = –2.00
11. a.
b.
c.
d.
X = 49
X = 70
X = 86
X = 92
X
z
86
1.20
77 –0.60
X
z
90 2.00
71 –1.80
12. σ = 3
13. σ = 8
14. μ = 49
X
z
105 0.50
90 –1.00
X
z
120 2.00
85 –1.50
X
z
130 3.00
60 –4.00
15. M = 56
X
z
90 –1.00
107 0.70
X
z
95 –0.50
115 1.50
X
z
120 2.00
85 –1.50
17. σ = 3
X
z
49 0.75
28 –1.00
X
z
52 1.00
64 2.00
X
z
43
0.25
34 –0.50
z
0.80
–0.40
16. s = 10
18. μ = 82 and σ = 3. The distance between the
two scores is 9 points which is equal to 3 standard
deviations.
19. μ = 60 and σ = 4. The distance between the
two scores is 10 points which is equal to 2.5
standard deviations.
20. a. central (z = 0.50) b. extreme (z = 5.00)
c. extreme (z = –2.50)
d. central (z = –0.50)
21. σ = 2
22. σ = 10
23. X = 43 corresponds to z = 1.50, and X =
60 corresponds to z = 0.50. X = 43 has a
higher position in its distribution and should
receive the higher grade.
27. a. μ = 4 and σ = 2
b. & c. Original X
6
1
3
4
7
3
z-score Transformed X
1.00
60
–1.50
35
–0.50
45
0
50
1.50
65
–0.50
45
28. a. μ = 5 and σ = 4
b. & c. Original X
0
6
4
3
12
z-score Transformed X
–1.25
50
0.25
62
–0.25
58
–0.50
56
1.75
74
24. X = 55 corresponds to z = –1.00, and X
= 40 corresponds to z = –0.50. X = 40 has a
higher position in its distribution and should
receive the higher grade.
25. a.
b.
c.
d.
X = 80 (z = –1.00)
X = 40 (z = –3.00)
X = 140 (z = 2.00)
X = 110 (z = 0.50)
26. a.
b.
c.
d.
X = 55
X = 51
X = 46
X = 40
(z = 0.50)
(z = 0.10)
(z = –0.40)
(z = –1.00
29. a. X
z
────────
10 +1.00
0 –1.50
4 –0.50
8 +0.50
4 –0.50
10 +1.00
b. For the sample of n = 6 z-scores, Σz = 0 and M = 0. Also for the z-scores, SS = 5,
s2 = 5/5 = 1, and s = 1.