Special Right Triangles - Practice 2

background image

Special Right Triangles - Practice 2

Solve these exercises on paper. Show your work to get credit.

Find the missing side lengths. Leave your answers as radicals in simplest form

1)

a is the SL OF the 60° D

is then OF the 45°D

x

a

h=2a

7V5 = 2a

h=LF

h=9vz (a=9Fz)

7V6

60.45.1)

a=7r

a is the SL of the 60° A

X

x 15 the h OF the 60° A

a is the of the 45°A

h = Vz x -> x=75

h=2(sL) = X = 2(9F)

212

a

2

X = F F E E = 7V12 = 7(2)V3 14 V3

60

9

X 18 V

45

2VEVZ

4

4

X = 7 13

3)

4)

$54.60

6V3

a is the SL OF the 60°A

a is the h OF the 60 D

a

45

h=2SL 603=20

h=2(SL) a=z(a)=18

x

a=613-353

aisales OF the 45°

2

x

h=arz X =18 12

a is the hof the 45°A

3V3

60

a

h=Vz.L

: = F x

9

X

=.3V3 Fz Tzrz K=3V6 2

5)

6)

the LL OF the 60°

a is the hot the 60°D

8

b the SL OF the 60°A

h=2(SL) a=2(8)=16

45

60

6

x

h=2b 6=2b b=3

a

45

aisalesof the 45°D

a

LL=SLV3 a=3F3

aisales of the 45°4

h=arz h=16Fz

60

x

b

n=avz x=31512

X=316

a is a leg of the 45° A

a is the hot the 45° A

7)

h=LVz 5 =arz a= 5-5V

8)

h=LV a=10EZ

45

FI

5

a=20

a is the h or the 60°A

60"

a

10 V2

xisthe SL OF the 60°D

a is the LL OF the 60°A

0

a

x

h =SLV3 a x x r

45

60

LL= SLV3 20=x53

x

X =a=5V

x=5V2

x =20

X=20V3

2 2.2

4

T3

3

9)

a is the h of the 45°A

10)

60

9

a is the hoF the 45°A

LVE a=5FEE==10

45

x

H=LVZ a= arz

a

a then OF the 60°A

a

x

45°

5V2

h=2(SL) 10=2(SL)

a isthe h OF the 60° A

60

SL=5

h = 2(SL) SL -=a are

LL=SLV3 X=SLV3

2

2

LL=(SL)V3 x X=9FV

x = 5r3

2

X=916

2