Special Right Triangles - Practice 2
Solve these exercises on paper. Show your work to get credit.
Find the missing side lengths. Leave your answers as radicals in simplest form
1)
a is the SL OF the 60° D
is then OF the 45°D
x
a
h=2a
7V5 = 2a
h=LF
h=9vz (a=9Fz)
7V6
60.45.1)
a=7r
a is the SL of the 60° A
X
x 15 the h OF the 60° A
a is the of the 45°A
h = Vz x -> x=75
h=2(sL) = X = 2(9F)
212
a
2
X = F F E E = 7V12 = 7(2)V3 14 V3
60
9
X 18 V
45
2VEVZ
4
4
X = 7 13
3)
4)
$54.60
6V3
a is the SL OF the 60°A
a is the h OF the 60 D
a
45
h=2SL 603=20
h=2(SL) a=z(a)=18
x
a=613-353
aisales OF the 45°
2
x
h=arz X =18 12
a is the hof the 45°A
3V3
60
a
h=Vz.L
: = F x
9
X
=.3V3 Fz Tzrz K=3V6 2
5)
6)
the LL OF the 60°
a is the hot the 60°D
8
b the SL OF the 60°A
h=2(SL) a=2(8)=16
45
60
6
x
h=2b 6=2b b=3
a
45
aisalesof the 45°D
a
LL=SLV3 a=3F3
aisales of the 45°4
h=arz h=16Fz
60
x
b
n=avz x=31512
X=316
a is a leg of the 45° A
a is the hot the 45° A
7)
h=LVz 5 =arz a= 5-5V
8)
h=LV a=10EZ
45
FI
5
a=20
a is the h or the 60°A
60"
a
10 V2
xisthe SL OF the 60°D
a is the LL OF the 60°A
0
a
x
h =SLV3 a x x r
45
60
LL= SLV3 20=x53
x
X =a=5V
x=5V2
x =20
X=20V3
2 2.2
4
T3
3
9)
a is the h of the 45°A
10)
60
9
a is the hoF the 45°A
LVE a=5FEE==10
45
x
H=LVZ a= arz
a
a then OF the 60°A
a
x
45°
5V2
h=2(SL) 10=2(SL)
a isthe h OF the 60° A
60
SL=5
h = 2(SL) SL -=a are
LL=SLV3 X=SLV3
2
2
LL=(SL)V3 x X=9FV
x = 5r3
2
X=916
2