Name: Key
Period:
Integration Using Substitution
The substitution method turns an unfamiliar integral into one we can evaluate. In other words, substitution gives us a simpler integral involving the variable
u.
**Five Steps for Integration by Substitution**
Step 1: Choose a new variable u
Step 2: Determine the value du
Step 3: Make the substitution
Step 4: Integrate the resulting integral
Step 5: Return to the initial variable x
**EX: Evaluate** ∫(x²+5)²2x dx
Let u = x²+5
du = 2x dx
∫u²du = u³/3 + C
→ (x²+5)³/3 + C
**EX: Evaluate** ∫(1/2x+1) dx
u = 2x+1
du = 2 dx
½ du = dx
∫(1/u) * ½ du = ½ ∫(1/u) du = ½ ln|u| + C
= ½ ln|2x+1| + C
**EX: Evaluate** ∫cos 2x dx
u = 2x
du = 2 dx
½ du = dx
∫cos u * ½ du = ½ ∫cos u du = ½ sin u + C
= ½ sin 2x + C
EX: Evaluate ∫x√x²+1 dx
u = x²+1
du = 2x dx
½ du = x dx
∫√u * ½ du = ½ ∫u^(1/2) du = ½ * (2/3)u^(3/2) + C
= (1/3)u^(3/2) + C
= (1/3)(x²+1)^(3/2) + C
EX: Evaluate ∫x³e^(x⁴) dx
u = x⁴
du = 4x³ dx
¼ du = x³ dx
∫e^u * ¼ du = ¼ ∫e^u du = ¼ e^u + C
= ¼ e^(x⁴) + C
EX: Evaluate ∫(1/x)ln|x| dx
u = ln|x|
du = (1/x) dx
∫u du = ln|u| + C
= ln|ln|x|| + C
EX: Evaluate ∫x√4+x dx
Need to replace x dx
So use eq to get x = u - 4
u = 4+x
du = dx
u - 4 = x
∫√u(u-4) du = ∫(u^(3/2) - 4u^(1/2)) du
= (2/5)u^(5/2) - (8/3)u^(3/2) + C
= (2/5)(4+x)^(5/2) - (8/3)(4+x)^(3/2) + C
15.2 Notes Integration Using Substitution
of 2
Report
Tell us what’s wrong with it:
Thanks, got it!
We will moderate it soon!
Free up your schedule!
Our EduBirdie Experts Are Here for You 24/7! Just fill out a form and let us know how we can assist you.
Take 5 seconds to unlock
Enter your email below and get instant access to your document