Name ________________________ Date ____
Analyzing Graphs of Polynomial Functions
4.8
I
Essential Question How many turning points can the graph of a polynomial function have?
EXPLORATION: Approximating Turning Points
Work with a partner. Match each polynomial function with its graph. � your reasoning. Then use a
graphing calculator to approximate the coordinates of the turning points of the graph of the function. Round your
answers to the nearest hundredth.
\tcJ-� rJ..u:;�
a.
G
f(x) = 2x2 + 3x - 4
b. f(x)
�\
.
t.
1
x2 J+ 3x + 2
A.
c.
-4
-6
2
3
·-6
6
-6
6
-7
6
F.
/
-6
6
-2
4
-6
6
-4 Name
-------------------------
Date ____
Notetaking with Vocabula
Core Concepts
Zeros, Factors, Solutions, and Intercepts
Let f (x) = an xn + an _1xn -l + • • · + a1 x + a0 be a polynomial function. The following statements
are equivalent.
f'
t
_Y}
c
*
Zero: k is a zero of the polynomial functionf
/
Factor: (x - �is a factor of the polynomial
vvN"
�� lA 0.1d ; Y\1·I! (t:."--• l :::- o
Cjj
�1� -l )
f(x).
Solution: k is a solution (or root) of the polynomial equation
:: O
f(x) =
0. -\-t) '1\c)'i'5
-lie
x-lntercept: If k is a real number, then k is an x-intercept of the graph of the
polynomial function/ The graph of/passes through
)<.-0\ .> 0, then/has at least one real zero between a and b.
(�o\ v1t�O;�')
N��s� 'f'°''f:t)
local maximum
�� •
local minimum
..ea,..e:.Jw,t., ��:
:�:J,....,._ZW!.llf*
191111&;,
Turning Points of Polynomial Functions
1. The graph of every polynomial function of degree n has at most n - 1 turning points.
+
2. If a polynomial function has n distinct real zeros, then its graph has exactly n - 1 turning points.
Notes:
'
'I:><
·y ;_
?2-
\
I
!
t11f'I'�
ro,
y�
•
�
7,
?<.
3,
\�
f'�
·")Oi'i\,\s
\
i�<�
'f'·�
?) -\v!-v Name_________________________ Date ____
Notetaking with Vocabulary (continued)
J. d e�< '2-_2. �- 0
X"- � 2.
X :_
.Ji,
A$(..
De. .t(I
--� L �� '
<7f,, b �tvvtt V\
5. f(x) = x4 - 29x2 + 100
6.g(x) = -½x3 + x2
-1
�"'" ' "' Name ___________________-=----,
�r
Notetaking with Vocabulary (continued)
:,;,-
Extra Practice
()'I--�
tf\_,.'fe.. ?\/I ,it. -t· z,
In Exercises 1-6, graph the function. Identify the x-lntercep�, and the points
where the local m ximums and local minimums occur. Determine the intervals
for which th-;function is increasin or decreasin . Determine whether the
function is even, odd, or neither.
�_
t_ "" ,. /"I f)O i<'\
rJ'
3. h(x)
I
=p�- x
l
2
___. F'
-13x - 3 �
-1�1:
-
�e,._r;:ro{�
+.r-y
I p
i
-
s
y
(�
;\.(),
�
YL, J..�-'-,
"1 � l \
h �
p
ol'1 i) � 5} O
,-
I
.p.�fl..cA �
fa,c1t'($
I
I
( flti+ t�C..-\-?Yf�·,
-I
-· (w
l___: l
,
"rt,
y\.
- :: J_ +)_
lvo ..... • (,,\ s " 1 ,.
�l ) I
�0 • •
l../)
-
-2
.-
blt
C vt
d1t1h
Fo , ,1'\ µ, I �
��ei 1M)
1
.t j (.. �( �1. �- L-/ ( I 'l (• 1 "1
'·1•;•-• .'�~-
., --,�..,• ••�..,,.•-.-,,,,.,u,.., .,.,....,.. �•Iii;-'""..,,, •
1((')
"
'""'
-
:: '1 .fr;:;
_ 4-(t:2.vS
J-::',..
�-
,, ' ( t. (A
s ; �·"':,
\1�r )( L �t,G, I
f\,\Or-t. )<'
-\'W1v\
> 7-�
- �. .r .�,-c........,.._...... -�
2...
J
Dec..rt�.,tr�
t"")
-1.b\ L -X. '- �
be,-\-WUI'\
�!-{.�'
Analyzing Graphs of Polynomial Functions
of 5
Report
Tell us what’s wrong with it:
Thanks, got it!
We will moderate it soon!
Free up your schedule!
Our EduBirdie Experts Are Here for You 24/7! Just fill out a form and let us know how we can assist you.
Take 5 seconds to unlock
Enter your email below and get instant access to your document