Calculus - Antiderivative Rules
In the rules given below, a 6= 0, k and n are real constants.
General Rules
Z
Z
c f (x) dx = c f (x) dx
Z
f (x) ± g( x) d x =
1
Z
f (x) dx ±
Z
Z
k dx = kx + C
Z
x n dx =
Z
1
dx = ln | x| + C
x
Z
1
1
dx = ln |ax + b| + C
a
ax + b
n+1
x n+1 + C,
g(x) d x
for n 6= −1
Antiderivatives of Trigonometric Functions
Z
Z
1
1
cos( ax ) dx = sin(ax) + C
sin(ax) d x = − cos(ax) + C
a
a
Z
Z
1
1
csc2 (ax) dx = − cot(ax) + C
sec2 (ax) dx = tan(ax) + C
a
a
Z
Z
1
1
csc( ax ) cot(ax) d x = − csc(ax) + C
sec(ax) tan( ax) dx = sec(ax) + C
a
a
Other Antiderivatives
Z
1
e ax dx = e ax + C
a
Z
³ x´
1
1
dx = tan−1
+C
a2 + x2
a
a
Z
Z
p
1
a2 − x2
dx = sin−1
³ x´
a
+C
¯x¯
1
1
¯ ¯
dx = sec−1 ¯ ¯ + C
p
2
2
a
a
x x −a