Green’s Formula
In this note we state Green’s formula and look at some examples. We
will prove it in the next note.
1.
Green’s Formula
Suppose that we have a linear time invariant system with rest IC.
P ( D ) y = f ( t ),
y(t) = 0 for t < 0
(1)
• As in previous sessions, we will consider f (t) to be the input to this
system. Everything we say will also hold for systems like
.
..
.
.
T + kT = kTe with input Te and mx + bx + kx = by with input y.
• In this context, where we don’t consider functions for t < 0, the initial
conditions mean that y(t) and all its derivatives are 0 at t = 0− .
• P( D ) is a polynomial differential operator. Although it can be of any
order, recall that we developed the second order case extensively in
the last unit, where it was often written as
..
.
P( D )y = my + by + ky.
Suppose further that w(t) is the unit impulse response for (1). That
is, w(t) satisfies P( D )w = δ(t), with rest IC. Then, for any input f (t) the
solution to equation (1) is given by Green’s formula
y(t) = ( f ∗ w)(t) =
Z t+
0−
f (τ )w(t − τ ) dτ.
(2)
This is a wonderful formula! It tells us the response to any input once we
know the unit impulse response. Furthermore, it gives us that response as
an integral which can be computed numerically if necessary. For many
physical systems the impulse response can be measured directly or deduced from measurements. So, Green’s formula gives us a method for
predicting the system’s response to any input.
2.
Unit Impulse Response = Weight Function
The unit impulse response is also called the weight function. We will
use the terms interchangeably. If we think of an integral as a ’sum’ then
Green’s formula shows the solution y(t) to (1) is given as a weighted sum of the small bits of input, f (τ ) dτ from before time t. Each piece is weighted
by w(t − τ ).
Before proceeding, let us recall the definition of the unit impulse response. The weight w(t) is the unique solution to the IVP
P( D )y = δ(t)
with rest IC
(3)
In the previous session we learned how to rewrite (3) as a homegeneous
equation. We will only restate this for second order equations. The weight
function for the system
..
.
mx + bx + kx = f (t)
is 0 for t < 0 and the solution to
..
.
mx + bx + kx = 0,
.
x (0) = 0, x (0) = 1/m
for t > 0.
3.
Examples
We now try out Green’s formula (2) in a couple of cases where it can be
checked against the solution found using another method.
Example 1. Find the particular solution given by (2) to
..
y + y = A,
.
y(0) = 0, y(0) = 0,
where A is a constant.
Solution. The unit impulse response is w(t) = sin t. Therefore for t ≥ 0,
we have
t
Z t
y p (t) =
A sin(t − τ ) dτ = A cos(t − τ ) = A(1 − cos t).
0
0
We check this by another method: The exponential response formula or
the method of undetermined coefficients produces the particular solution
y p = A. Adding in the homogeneous solution we get the general solution
to the DE is
y = A + c1 cos t + c2 sin t.
You can easily compute that the rest initial conditions are matched by
y = A − A cos t, as found by Green’s formula. Example 2. Find the particular solution for t ≥ 0 given by (2) to
(
1 for 0 ≤ t ≤ π
00
y + y = f (t) =
0 elsewhere
Solution. Here the method of Example 1 leads to two cases: 0 ≤ t ≤ π and
t ≥ π:
t
R t
Z t
0 sin(t − τ ) dτ = cos(t − τ ) = 1 − cos t, for 0 ≤ t ≤ π;
0π
yp =
f (τ ) sin(t − τ ) dτ =
Rπ
0
0 sin(t − τ ) dτ = cos(t − τ ) = −2 cos t, for t ≥ π .
0
We leave it to ther reader to check this by our earlier methods.
Green’s Formula
of 3
Report
Tell us what’s wrong with it:
Thanks, got it!
We will moderate it soon!
Free up your schedule!
Our EduBirdie Experts Are Here for You 24/7! Just fill out a form and let us know how we can assist you.
Take 5 seconds to unlock
Enter your email below and get instant access to your document