Advanced Math
Sum & Difference Identities Notes
Sine & Cosine
sin 30° = 1/2
cos 30° = √3/2
sin 60° = √3/2
cos 60° = 1/2
sin 45° = √2/2
cos 45° = √2/2
"α" and "β" are two angle measures.
Sum and Difference Identities:
cos(α ± β) = cosαcosβ ∓ sinαsinβ
sin(α ± β) = sinαcosβ ± cosαsinβ
Find the exact value of the following using sum and difference identities:
1. cos 75°
cos(30° + 45°) = cos 30°cos 45° - sin 30°sin 45°
= (√3/2)(√2/2) - (1/2)(√2/2)
= √6/4 - √2/4 = (√6 - √2)/4
2. sin 15°
sin(45° - 30°) or sin(60° - 45°)
sin 45°cos 30° - cos 45°sin 30°
(√2/2)(√3/2) - (√2/2)(1/2)
√6/4 - √2/4 = (√6 - √2)/4
3. cos 15°
cos(60° - 45°) or cos(45° - 30°)
cos 60°cos 45° + sin 60°sin 45°
(1/2)(√2/2) + (√3/2)(√2/2)
√2/4 + √6/4 = (√2 + √6)/4
4. sin 105°
sin(45° + 60°)
sin 45°cos 60° + cos 45°sin 60°
(√2/2)(1/2) + (√2/2)(√3/2)
√2/4 + √6/4 = (√2 + √6)/4
Using reference angles, find the following:
sin 135° = √2/2 cos 135° = -√2/2
unit circle with an angle of 135 degrees in the second quadrant
cos 315° = √2/2 sin 315° = -√2/2
unit circle with an angle of 315 degrees in the fourth quadrant
Now use #5 and #6 above, along with sum and difference identities to find the following:
sin 195° (Use 60° and 135°)
sin(60° + 135°) = sin 60°cos 135° + cos 60°sin 135°
= (√3/2)(-√2/2) + (1/2)(√2/2)
= -√6/4 + √2/4 = (-√6 + √2)/4
cos 345° (Use 30° and 315°)
cos(30° + 315°) = cos 30°cos 315° - sin 30°sin 315°
= (√3/2)(√2/2) - (1/2)(-√2/2)
= √6/4 + √2/4 = (√6 + √2)/4
Draw a unit circle and label each of the quadrantal angles in degrees.
unit circle with angles 0°, 90°, 180°, and 270° labeled
Using the unit circle above and the sum and difference formulas, find the following:
sin(90° - θ)
sin(90° - θ) = sin 90°cosθ - cos 90°sinθ
= 1*cosθ - 0*sinθ
= cosθ
cos(90° - θ)
cos(90° - θ) = cos 90°cosθ + sin 90°sinθ
= 0*cosθ + 1*sinθ
= sinθ
Sum and Difference Notes Solution Key
of 2
Report
Tell us what’s wrong with it:
Thanks, got it!
We will moderate it soon!
Free up your schedule!
Our EduBirdie Experts Are Here for You 24/7! Just fill out a form and let us know how we can assist you.
Take 5 seconds to unlock
Enter your email below and get instant access to your document