CHAPTER 5
CHOICE UNDER UNCERTAINTY
EXERCISES
1. Consider a lottery with three possible outcomes: $100 will be received with probability
.1, $50 with probability .2, and $10 with probability .7.
a.
What is the expected value of the lottery?
The expected value, EV, of the lottery is equal to the sum of the returns weighted by
their probabilities:
EV = (0.1)($100) + (0.2)($50) + (0.7)($10) = $27.
b.
What is the variance of the outcomes of the lottery?
The variance, σ2, is the sum of the squared deviations from the mean, $27, weighted by
their probabilities:
σ2 = (0.1)(100 - 27)2 + (0.2)(50 - 27)2 + (0.7)(10 - 27)2 = $841.
c.
What would a risk-neutral person pay to play the lottery?
A risk-neutral person would pay the expected value of the lottery: $27.
3. Richard is deciding whether to buy a state lottery ticket. Each ticket costs $1, and the
probability of the following winning payoffs is given as follows:
a.
Probability
Return
0.50
$0.00
0.25
$1.00
0.20
$2.00
0.05
$7.50
What is the expected value of Richard’s payoff if he buys a lottery ticket? What is
the variance?
The expected value of the lottery is equal to the sum of the returns weighted by their
probabilities:
EV = (0.5)(0) + (0.25)($1.00) + (0.2)($2.00) + (0.05)($7.50) = $1.025
The variance is the sum of the squared deviation from the mean, $1.025, weighted by
their probabilities:
σ2 = (0.5)(0 - 1.025)2 + (0.25)(1 - 1.025)2 + (0.2)(2 - 1.025)2 + (0.05)(7.5 - 1.025)2, or
σ2 = $2.812.
b.
Richard’s nickname is “No-risk Rick.”
Would he buy the ticket?
He is an extremely risk-averse individual.
An extremely risk-averse individual will probably not buy the ticket, even though the
expected outcome is higher than the price, $1.025 > $1.00. The difference in the
expected return is not enough to compensate Rick for the risk. For example, if his
wealth is $10 and he buys a $1.00 ticket, he would have $9.00, $10.00, $11.00, and
$16.50, respectively, under the four possible outcomes. Let us assume that his utility
function is U = W0.5, where W is his wealth. Then his expected utility is:
EU = (0.5)(90.5 )+ (0.25)(100 .5 )+ (0.2 )(110.5 )+ (0.05)(16.50.5 ) = 3.157.
60 Chapter 5: Choice under Uncertainty
This is less than 3.162, which is the utility associated with not buying the ticket
(U(10) = 100.5 = 3.162). He would prefer the sure thing, i.e., $10.
c.
Suppose Richard was offered insurance against losing any money. If he buys 1,000
lottery tickets, how much would he be willing to pay to insure his gamble?
If Richard buys 1,000 tickets, it is likely that he will have $1,025 minus the $1,000 he
paid, or $25. He would not buy any insurance, as the expected return, $1,025, is
greater than the cost, $1,000. He has insured himself by buying a large number of
tickets.
d.
In the long run, given the price of the lottery ticket and the probability/return
table, what do you think the state would do about the lottery?
In the long run, the state lottery will be bankrupt! Given the price of the ticket and the
probabilities, the lottery is a money loser. The state must either raise the price of a
ticket or lower the probability of positive payoffs.
6. Suppose that Natasha’s utility function is given by u(I) = I0.5 , where I represents annual
income in thousands of dollars.
a.
Is Natasha risk loving, risk neutral, or risk averse? Explain.
Natasha is risk averse. To show this, assume that she has $10,000 and is offered a
gamble of a $1,000 gain with 50 percent probability and a $1,000 loss with 50 percent
probability. Her utility of $10,000 is 3.162, (u(I) = 100.5 = 3.162). Her expected utility is:
EU = (0.5)(90.5 ) + (0.5)(110.5 ) = 3.158 < 3.162.
She would avoid the gamble. If she were risk neutral, she would be indifferent between
the $10,000 and the gamble; whereas, if she were risk loving, she would prefer the
gamble.
You can also see that she is risk averse by plotting the function for a few values (see
Figure 5.6) and noting that it displays a diminishing marginal utility. (Or, note that
the second derivative is negative, again implying diminishing marginal utility.)
Utility
5
U( I )
4
3
2
1
5
10
15
20
Figure 5.6
61
Income in thousands Chapter 5: Choice under Uncertainty
b.
Suppose that Natasha is currently earning an income of $10,000 (I = 10) and can earn
that income next year with certainty. She is offered a chance to take a new job that
offers a .5 probability of earning $16,000, and a .5 probability of earning $5,000.
Should she take the new job?
The utility of her current salary is 100.5, which is 3.162. The expected utility of the new
job is
EU = (0.5)(50.5 ) + (0.5)(160.5 ) = 3.118,
which is less than 3.162. Therefore, she should not take the job.
c.
In (b), would Natasha be willing to buy insurance to protect against the variable
income associated with the new job? If so, how much would she be willing to pay
for that insurance? (Hint: What is the risk premium?)
Assuming that she takes the new job, Natasha would be willing to pay a risk premium
equal to the difference between $10,000 and the utility of the gamble so as to ensure that
she obtains a level of utility equal to 3.162. We know the utility of the gamble is equal
to 3.118. Substituting into her utility function we have, 3.118 = I0.5, and solving for I we
find the income associated with the gamble to be $9,722. Thus, Natasha would be
willing to pay for insurance equal to the risk premium, $10,000 - $9,722 = $278.
62
Chapter 5 Choice under Uncertainty
of 3
Report
Tell us what’s wrong with it:
Thanks, got it!
We will moderate it soon!
Free up your schedule!
Our EduBirdie Experts Are Here for You 24/7! Just fill out a form and let us know how we can assist you.
Take 5 seconds to unlock
Enter your email below and get instant access to your document