Honors Geometry
Midterm Review: PROOFS PAGE (Chps1-7)
Name _____________________________________
On a separate sheet of paper, complete the following two-column proofs. These are just examples! Make sure to look over
ALL of our highlighted reasons from first semester.
1.
2. Given: ☼Q
∠A is comp. to ∠BCA
RP ≅ PS
Given: ∠D is comp. to ∠DBC
∠D ≅ ∠BCA
Prove: PQ bisects ∠RPS
Prove: ∠A ≅ ∠DBC
3.
Given:
∠1 ≅ ∠2
∠1 ≅ ∠3
4.
∠T ≅ ∠ W
Given: ∠TSW ≅ ∠XSV
ST ≅ SW
Prove: FH bisects ∠EFG
Prove: SX ≅ SV
5.
Given:
CE ≅ DF , BD ≅ GE ,
6.
BD ⊥ CF , GE ⊥ CF
Prove: ∆ACF is isosceles
WR bisects ∠XWZ
Given: XR bisects ∠ZXW
∆ZWX is isos. with baseWX
Prove: ∠XWR ≅ ∠RXW
7.
9.
Prove: The segments drawn from the midpoint of the
8.
base of an isosceles triangle to the midpoints of the
legs are congruent.
Prove: The line segments joining the vertex angle of an 10.
isosceles triangle to the trisection points of the base are
congruent.
Prove: If the median to a side of a triangle is also an
altitude to that side, then the triangle is isosceles.
Prove: If two isosceles triangles have the same base,
then the line joining the vertices of the vertex angles of
the triangles is the perpendicular bisector of the base. 11.
Given:
12.
∠AEC ≅ ∠BED
Given:
AE ≅ ED
Prove: ∆ABC is isosceles
Prove: AB ≅ CD
13.
14.
Given: ☼O
∠DOB ≅ ∠EOA
Prove: CD ≅ CE
Given:
Prove: ST ≅ RV
16.
∠OMP ≅ ∠OPM
∠PMR ≅ ∠MPR
Prove: OR ⊥ bis. PM
17.
∠NOT ≅ ∠POV
Given: ∠N ≅ ∠P
O is a midpoint
OD ≅ OE
15.
∠1 ≅ ∠5
∠ 2 ≅ ∠6
Given: ☼P
M is a midpoint of AB
Prove: PQ ⊥ AB
Given: ∆PRS isosceles (base SR)
∠PRT ≅ ∠PSQ
Prove: TR ≅ QS
18.
P
Given:
AB ≅ AC
BD ≅ DC
Prove: ∠B ≅ ∠C
T
S
Q
R 19.
Prove: If segments drawn from the midpoint of one side of a
triangle perpendicular to the other two sides are congruen,
then the triangle is isosceles.
20.
Given:
AC ≅ BD
AB ≅ CD
Prove: ∠B ≅ ∠C
21.
Given:
∠ A ≅ ∠E
22.
∠EBC ≅ ∠FCB
Given: ∠ABF ≅ ∠DCE
FA ≅ FE
CH ≅ FB
Prove: CF bisects ∠BCD
Prove: ∆EHC isosceles
23.
24.
25.
PB ⊥ m
Given:
Prove:
PA ≅ PC
∆ABC is isosceles 26.
EB ≅ DF
27.
Given: AG ≅ GC
∠EAG ≅ ∠FCG
Prove: ABCD parallelogram
28.
29.
∠A ≅ ∠X
Given: ∠AVZ ≅ ∠XYB
∠ZVB ≅ ∠YBX
Prove: VBYZ parallelogram
30.
31.
Given: AD median , ∠ADC ≠ ∠ADB
Prove: AC ≠ AB 32.
33.
34.
35.
36.
PR ≅ PU
Given: QR ≅ QU
RS ≅ UT
Prove: ∠1 ≅ ∠2
38.
37.
AD ≅ BC
Given: AF ≅ EC
BD ⊥ AF , BD ⊥ EC
Prove: AB ≅ DC