COSMOS: Complete Online Solutions Manual Organization System
Chapter 4, Solution 147.
Free-Body Diagram:
Express forces in terms of their rectangular components:
W1 = W2 = − ( 30 lb ) j
uuuur
− 6i + y j − 6k
BH
=T
T=T
BH
( −6 )2 + y 2 + ( − 6 )2
uuur
AF
6i − 3 j − 6k
2
1
2
λ AF =
=
= i− j− k
AF
( 6 ) 2 + ( − 3)2 + ( − 6 ) 2 3 3 3
rG/ A = ( 3 ft ) i
rB/ A = ( 6 ft ) i
rI / A = ( 6 ft ) i − ( 3 ft ) k
continued COSMOS: Complete Online Solutions Manual Organization System
Now,
(
ΣM AF = 0:
)
(
)
(
)
λ AF ⋅ rG/ A × W1 + λ AF ⋅ rB/ A × T + λ AF ⋅ rI / A × W2 = 0
2 −1 − 2
2 −1 − 2
1
3 0
0 + 6 0 0
3
−6 y −6
0 − 30 0
60 + ( − 36 − 12 y )
( −6 )2
T
3
( − 6 )2 +
2 −1 − 2
1
+ 6 0 −3 = 0
3
+ y 2 + 36
0 − 30 0
T
3
y 2 + 36
+ 60 = 0
Solving for T :
T =
30
30 + y
T =
30
3+ y
( −6 )2 +
y 2 + 36
y 2 + 72
Now to find the minimum of T, differentiate T with respect to y and equate the derivative to zero.
dTm
dy
1
( 3 + y ) 72 + y 2
2
=
(
)
−
1
2
( 2 y ) − ( 72 +
(3 + y )
2
1
2 2
y
)
(1) 30
=0
Setting the numerator equal to zero and simplifying:
( 3 + y ) y − y 2 − 72 = 0, or
y = 24 ft
x = 0, y = 24 ft
(a) Minimum occurs at:
(b) Using the expression for T:
Tmin
30
3 + 24
)2 + 72
28.284 lb
or
Tmin = 28.3 lb
COSMOS Chapter 4 Solution 147
of 2
Report
Tell us what’s wrong with it:
Thanks, got it!
We will moderate it soon!
Free up your schedule!
Our EduBirdie Experts Are Here for You 24/7! Just fill out a form and let us know how we can assist you.
Take 5 seconds to unlock
Enter your email below and get instant access to your document