2/9/06
KEY CONCEPTS FROM LAST TIME
blackbody
Planck's law
Wien's disp. law
Stefan-Boltzmann law
solid angle
intensity
emissive power
I_λ = Power radiated / Projected area = P_λ / dA_d * dλ * dΩ = P_λ' / dA * cos θ * dλ * dΩ
P_λ' = I_λ * dA * cos θ * dλ * dΩ
P_λ = ∫ I_λ * dA * cos θ * dλ * dΩ
E_bλ = πI_bλ
Lambert's Law: Lambert's surface
Intensity is a scalar
WHY DOES IT VARY IN DIFFERENT DIRECTIONS?
PHASE SPACE
(wx, wy, wz)
f(x, y, z, vx, vy, vz, t)
(x, y, z)
t
DIST. FUNCT
HOW TO MAKE A BLACK BODY
"HOLRAM"
RADIATION PRESSURE
FΔt = Δp = Δmv, no rest mass so p = h/λ
P_r = ∫ I_λ / hν * h/λ * cos θ dΩ = 2πI_b / hc
P_r = 2E_b / 3c
FOR VISIBLE LIGHT => LUMINOUS INTENSITY
L_λ = K_λ * I_λ
LUMINOUS EFFICIENCY
K_max = 683 lm/W
* FOR 60W LIGHT BULB
-> 840 lumen
-> 3W
0.4 0.565 0.7
[μm]
EMISSIVITY
E' = (I_λ cos θ dA dλ dΩ) / (I_bλ cos θ dA dλ dΩ) = P_λ / P_bλ
ε' = I_λ / I_bλ
"SPECTRAL-DIRECTIONAL EMISSIVITY"
ε_λ = ∫ ε'λ cos θ dΩ / ∫ cos θ dΩ
ε = ∫ ε_λ E_bλ dλ / ∫ E_bλ dλ
DIFFUSE ε' = ε_λ
GRAY ε' = ε
DIFFUSE-GRAY ε' = ε (IDEAL SITUATION)
REFLECTION COULD BE
BOUND BY A PARTICULAR
REGION
REFLECTION
ABSORPTION
TRANSMISSION
ABSORPTIVITY
α_λ' = H_aλ' / I_λ
α_λ = H_aλ / H_λ
SPECTRAL DIR.
IRRADIATION
α_λ'(T, θ, ψ, λ)
SPECTRAL-DIRECTIONAL-HEMISPHERICAL
EMISS.
α_λ = ∫ dI_λ cos θ_r dΩ_r / H_λ dΩ_i
= ∫ φ_λ'' cos θ_r dΩ_r / π
WILL GET 8 VERSIONS, BECAUSE
NOW, REFLECTION IS DIRECTIONALLY
DEPENDENT.
FROM AN NER BALANCE
ε + α + τ = 1
ε'_λ + α'_λ + τ'_λ = 1
IF OPAQUE, THEN τ = 0 AND ε + α = 1
KIRCHHOFF'S LAW
ε'_λ(T,θ,φ) = α'_λ(T,θ,φ)
BLACK BODY
ε'_λ(T) = α'_λ(T)
IF LINEAR, ONLY EMITTER TEMP. MATTERS
IF DIFFUSE GRAY, ε = ε_λ
**IF GEOMETRY OF STRUCTURE IS IMPORTANT, PPL. WILL USE**
"TRANSMITTANCE"
"REFLECTANCE"
"ABSORPTANCE"
"EMITTANCE"
RADIATION TRANSFER
q' = εE_b(T) - αE_b(T₀)
BLACK
SURROUNDINGS
T₀
q' = εσ(T⁴ - T₀⁴)
SANITY CHECK: WHEN T = T₀
NO HEAT TRANSFER
FOR 2 SURFACES....
T₁, A₁ I = P' / (cos θ₁ dA₁ dΩ₁)
T₂, A₂ L = cos θ₁ dA₁ / S₂
P' = I dA₁ cos θ₁ dΩ₁
P_tot = ∫∫ I dA₁ cos θ₁ dΩ₁
F₁₂ dA₁ = ∫∫ P' / P_tot * cos θ₁ dΩ₁
"view factor"