COSMOS: Complete Online Solutions Manual Organization System
Chapter 9, Solution 25.
J O ≡ I 0 = ∫ r 2dA
(a) Have
dA =
Where
Then
R
3π
J O = ∫R 2 r 2
1
2
3π
rdr
2
r dr
R
=
3π 4 2
3π 4
r
R2 − R14
=
8
8
R1
(
)
JO =
I x = 3 ( I x )1
so that
( )1 + ( I y )2 + ( I y )3 = 3 ( I y )1
Iy = Iy
( I x )1 = ( I y )1
Symmetry implies
Ix = I y
Then
Then
)
( I x )1 = ( I x )2 = ( I x )3
By inspection
Now
(
I x = ( I x )1 + ( I x )2 + ( I x )3
(b) Now
Similarly,
3π 4
R2 − R14
8
JO = I x + I y
Ix = I y =
JO
3π 4
=
R2 − R14
2
16
(
)
or I x = I y =
3π 4
R2 − R14
16
(
)