Answer Key
University:
Santa Fe CollegeCourse:
PHY 2048 | General Physics 1 with CalculusAcademic year:
2024
Views:
153
Pages:
6
Author:
Jabin F.
-
²) ΔxΔp = √((a + d)² / 3 - 0) * √((ħ²/2m) - 0) ΔxΔp = (a + d) / √3 * √(ħ²/2m) ΔxΔp = (a + d) * ħ / √(6m) Continuation from the previous image:
= (-iħ)² * ∫ ψ*(x) d²/dx² ψ(x) dx / ∫ ψ*(x) ψ(x) dx
= ħ² * ∫ e^(-x²/2) * d²/dx² (e^(-x²/2)) dx / ∫ e^(-x²/2) * e^(-x²/2) dx
= ħ² * ∫ e^(-x²/2) * (-1 + x²) * e^(-x²/2) dx / ∫ e^(-x²/2) * e^(-x²/2) dx
= ħ² * ∫ (1 - x²) * e^(-x²) dx / ∫ e^(-x²) dx
= ħ² * (∫ e^(-x²) dx - ∫ x²e^(-x²) dx) / ∫ e^(-x²) dx Gaussian Integrals: ∫ e^(-x²) dx = √π ∫ x²e^(-x²) dx = (1/2) * √π Substituting:
= ħ² * (√π - (1/2) * √π) / √π
= ħ² * (1 - (1/2))
= ħ²/2 Uncertainty Product (ΔpΔx): ΔpΔx = √(
-
²) * √(
PHY 2048 : Answer Key #18
Get your assignment done in just 3 hours. Quick, easy, and available 24/7.
Report
Tell us what’s wrong with it:
Thanks, got it!
We will moderate it soon!
Our EduBirdie Experts Are Here for You 24/7! Just fill out a form and let us know how we can assist you.
Enter your email below and get instant access to your document