Answer Key
University:
Santa Fe CollegeCourse:
PHY 2048 | General Physics 1 with CalculusAcademic year:
2024
Views:
462
Pages:
5
Author:
Jabin F.
≈ ħ / Δx
/ (2m)
Given:
|ψ|^2 = (1 / (2πσ²)) * e^(-x²/2σ²)
Calculations:
Δx = σ / √2
ΔpΔx = ħ / 2
Δp = ħ / (2σ)
(Δp)² = ħ² / (4σ²)
= (Δp)² + ² = ħ² / (4σ²) (since = 0)
/ (2m) = ħ² / (8mσ²)
Problem:
The wave function of a particle of mass m in 3-D position space is given by ψ(r) = (A/r) * e^(ikr), where A and k are constants. Find the corresponding probability current density.
Solution:
|ψ(r)|² = (A²/r²) * e^(ikr) * e^(-ikr) = A²/r²
J = (ħ/2m) * Im(ψ*∇ψ)
J = (ħ/2m) * Im(A*e^(-ikr) * ∇(Ae^(ikr)))
J = (ħ/2m) * Im(A*e^(-ikr) * (ikA)e^(ikr))
J = (ħ/2m) * Im(-ikA²)
J = (ħk/2m) * |A|²
Given:
ψ(x) = u(x) * e^(ikx)
u(x) is real
Calculations:
J = ψ*∇ψ
J = u*(x) * e^(-ikx) * ∇(u(x) * e^(ikx))
J = u*(x) * e^(-ikx) * (u'(x) * e^(ikx) + ik * u(x) * e^(ikx))
J = u*(x) * u'(x) + ik * |u(x)|²
ψ*(∂ψ/∂x) = u*(x) * e^(-ikx) * (iku(x) * e^(ikx))
ψ*(∂ψ/∂x) = ik * |u(x)|²
Hamiltonian:
H = (p²/2m) + V(x)
Hψ = (-ħ²/2m) * d²/dx² ψ + V(x)ψ
Substituting:
Hψ = (-ħ²/2m) * d²/dx² (u(x) * e^(ikx)) + V(x) * u(x) * e^(ikx)
Hψ = (-ħ²/2m) * (u''(x) * e^(ikx) + 2ik * u'(x) * e^(ikx) - k² * u(x) * e^(ikx)) + V(x) * u(x) * e^(ikx)
Hψ = (-ħ²/2m) * (u''(x) + 2ik * u'(x) - k² * u(x)) * e^(ikx) + V(x) * u(x) * e^(ikx)
Hψ = ((-ħ²/2m) * (u''(x) + 2ik * u'(x) - k² * u(x)) + V(x) * u(x)) * e^(ikx)
Comparing:
E = (-ħ²/2m) * (u''(x) + 2ik * u'(x) - k² * u(x)) + V(x) * u(x)
E = (-ħ²/2m) * (u''(x) + 2ik * u'(x)) + (V(x) - (ħ²k²/2m)) * u(x)
Physics: Answer Key #22
Get your assignment done in just 3 hours. Quick, easy, and available 24/7.
Report
Tell us what’s wrong with it:
Thanks, got it!
We will moderate it soon!
Our EduBirdie Experts Are Here for You 24/7! Just fill out a form and let us know how we can assist you.
Enter your email below and get instant access to your document